
Mache: No-Loss Trace Compaction

A. Dain Samples

Computer Science Division-EECS

University of California at Berkeley

. Berkeley, CA 94720

September 15, 1988

Abstract

Execution traces can be significantly compressed using their referenc

ing loca.lity. A simple observation leads to a. technique capable of com

pressing execution traces by a.n order of magnitude; instruction-only traces .
are compressed by two orders of magnitude. This technique is unlike previ

ously reported trace compression techniques in that it compresses without

loss of information and, therefore, does not affect trace-driven simulation

time or accuracy.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
15 SEP 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
Mache: No-Loss Trace Compaction

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Execution traces can be significantly compressed using their referencing locality. A simple observation
leads to a technique capable of compressing execution traces by an order of magnitude; instruction-only
traces are compressed by two orders of magnitude. This technique is unlike previously reported trace
compression techniques in that it compresses without loss of information and, therefore, does not affect
trace-driven simulation time or accuracy.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

24

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Mache: No-Loss Trace Compaction*

A. Dain Samples t

September 15, 1988

Abstract

Execution traces can be significantly compressed using their referenc

ing locality. A simple observation leads to a technique capable of com

pressing execution traces by an order of magnitude; instruction-only traces

are compressed by two orders of magnitude. This technique is unlike previ

ously reported trace compression techniques in that it compresses without

loss of information and, therefore, does not affect trace-driven simulation .
time or accuracy.

1 Introduction

Collecting and storing execution traces produces httge amounts of data that can

tax the largest disk system (or, more precisely, other users of that disk system).

Traces on the order of tens of millions of memory references requiring anywhere

from forty to fifty megabytes are not uncommon.

In section 2, I discuss a basic method for reducing the space required to store

an execution trace significantly. The technique has the following prop~rties.

•This research was sponsored by the Defence Advanced Research Projects Agency (DoD),

monitored by Space and Naval Warfare Systems Conunand under Contract N00039-8S-C-0292.

tSupported in part by an AT&T Bell Laboratories Scholarship.

1

• No information is lost.

• Compaction is in direct proportion to the locality of the memory references

in the trace.

• It is a one-pass algorithm with running time O(n).

Section 4 examines why the technique works so well, and looks to see if any

improvements are possible. 'While improvements are possible, the results are

not sufficiently better to warrant the additional complexity.

2 Method

I assume that the memory traces of interest are similar to Dineroiii input format

[2]. Each memory reference is a pair (label address): the label identifies the type

of reference and the address is an unsigned integer. In the memory traces used

in this paper, there are three labels: a label for an instruction fetch, a label for

data read, and a label for data write.

The technique described here, called .Maching (rhymes with 'caching'), loses

no information and compresses general memory reference traces (instruction

and data) by factors of ten to twenty times and instruction address traces by

factors of thirty to two hundred times depending upon locality.

The basic technique is in Figure ·1: when a (label addnss) pair is read, the

difference 6 = cache/abel - address is computed between this address and the

last address for this label. If this difference is small enough, it is emitted in the

low-order 14 bits of the codeword; otherwise the full address is emitted preceded

by a 'miss' indicator.

The routines emitByte, emit2bytes, and emit4 bytes pass their argument of

the indicated size to a dynamic, one-pass compression scheme which takes ad

vantage of repeating patterns in the sequence of bytes. I have used the Lempel

Ziv compression algorithm [9,10,11] implemented as the compress program un-

2

encode(label,address) {
6 - cache(label] - address;
if (161 ;::: threshold) {
I* A 'miss'; emit the full address *I

else {

codeByte - (missFlag < < 6) I label;
emitB yte(co deB yte);
emit4bytes(address);
}

I* A 'hit'; emit the shorter difference value *I
codeWord- (label<< 14) 16;
emit2bytes(codeWord);
}

cache(label] - address;
}

Figure 1: The inner loop

10

der UNIX1 • The Lempel-Ziv technique (hereafter referred to as LZ) is extraor

dinarily capable of detecting and exploiting the memory referencing patterns

exposed by the differencing of the execution trace.

2.1 Traces

We have used several different execution traces of programs running to test the

efficacy of Mache (see Table 1 for quantitative descriptions). COMP is a trace2

of compress compressing a file ofC source code (a concatenation of all the source

code for a version of Mache). This file of source code was 90,872 bytes long and

compressed to 38006 bytes. The compress program has a very tight inner loop

for very high locality in its instruction references.

CCI is a trace of the Gnu C compiler compiling the 303 line file genemit.c,

which is one of the source files for the Gnu C compiler. The file contains 276

1 UNIX is a trademark of AT&T Bell Laboratories.
2 All traces reported in this paper were taken on a Sun workstation using the 68020.

3

•

name # references bytes command

COMP 12,437,454 62,187,270 compress <sources.c >temp.Z

CC1 13,711,558 68,557,790 gee genemit.c

VAX 13,898,315 69,491,575 vaxima <vax.in

TROFF 13,092,334 65,461,670 troff -t -Tip -rv1 paper.short

LATEX 27,221,840 136,109,200 latex todo

SCR-N 16,368,894 81,844,470 scrunch <scrunch.c

SCR-R 16,651,110 83,255,550 xscrunch <scrunch.c

Table 1: Summary of traces used

lines, is 4,664 bytes long sans comments, and has nine function definitions.

VAX is a trace of a version of Vaxima (a Macsyma-like symbolic processor)

solving eight simultaneous equations in nine variables. The trace includes the

reading of the input and the displaying of the answer. It was included since Vax

ima is implemented in LISP, a language often charged with the sin of producing

non-local memory referencing behavior.

TROFF is a trace of the troff typesetting system working on a short paper.

The file is 7705 bytes long, and produces 9768 bytes of output. This trace

is included because of the nature of the troff source code. Troff was more or

less transliterated into C from an assembly language implementation that made

heavy use of jump tables [8). The resulting C code is peppered with switch

statements and non-structured gotos, and has bad locality.

LATEX is a trace of the l).TEX text processor constructing a "To Do List"

form. The resulting typeset page of output has very little text and a lot of

straight lines. lATEX is a macro package running on a Common 'fEX version of

Knuth's text processing system [3).

SCR-N and SCR-R are traces of a Huffman encoder called scrunch compress

ing a 1529 line, 41,796 byte file (its own source) that is compressed to 27,345

bytes. SCR-N is the trace of a version of scrunch produced directly by the Gnu

C compiler. SCR-R is the trace of a version of scrunch that has been modified

to improve the locality of the code. See reference 6 for more information on this

research. The important point is that these two traces show the effect of the

4

•

TO

60 ••

COMP CCI VAX TROFF LATEX SCR-N SCR-R

Figure 2: Breakdown of memory references in each trace

S6

S2

21

c
12

1.0 ... e.o

~ ~
COMP CCI VAX TROFF LATEX SCR-N SCR-R

Figure 3: compress vs. Mache, percent of original trace

locality of an execution trace on .Mache's performance.

In Figure 2 we see that the traces are similar in their mix: 50-60% instruction

references, 20-30% data reads and 15-25% data writes. The numbers for any

one trace may not add to 100 due to rounding errors. In particular, SCR-N has

slightly less than 30% reads, and slightly more than 58% instruction fetches,

while SCR-R has more instruction fetches than SCR-N, but the same number

of reads and writes .

3 Results

Figure 3 shows the results of compressing each trace by compress (C) and .Mache

(M). From these traces we see that .Mache almost always creates a file at least

5

20%

15

5

10

a.2

-
0

10~

a.o
r--

10 ~.3

-
I

16

r--

0 a.t a.t

COMP CCl VAX TROFF LATEX SCR-N SCR-R

Figure 4: Compression of instruction-only and data-only traces

ten times smaller than the· original trace file and over three times smaller than

that produced by compress.

This scheme works exceptionally well for instruction-only traces. Figure 4

compares the compaction achieved on the full trace (ID), with the compaction

achieved on only instruction references (I) and the data references (D). The

percentages in the graph are relative to the sizes of the traces with all memory

references not of interest thrown out. For example, the full trace COMP has
•

12,437,454 references, occupying 62,187,270 bytes in raw form. Of those refer-

ences, 8,065,326 are instruction references which take 40,326,630 bytes in raw

form, but only 0.88% of that (355,143 bytes) in compressed form. It is appar

ent that the bulk of the space savings for a complete trace is derived from the

regularity in the instruction stream.

Traces SCR-N and SCR-R are of particular note since they show the sensi

tivity of the compression scheme to the locality of the trace. Both are traces of

the same program working on the same data. SCR-N is a trace of the program

as it is produced by the Gnu C compiler, and SCR-R is a trace of the p.rogram

after its basic blocks and procedures were reorganized to improve the program's

behavior in an instruction cache. In all other respects, the two versions of the

program were the same. The difference in compression between the two traces is

attributable solely to the differences in the locality of the memory references be-

6

50%

COMP CCl VAX TROFF LATEX SCR-N SCR-R

Figure 5: Miss rates

tween the two versions of the program. It is interesting to note that even though

trace SCR-R contains more instructions fetched and executed than SCR-N (see

Table 2), the reorganized program nevertheless executes faster and the trace

compresses better due to the improved locality of the code.

In Figure 5 the 'miss rate' for each kind of reference for each trace is plotted.

The miss rate is the percentage of references that require a full address to be

emitted because the difference between the last and current address is too large

to be encoded in a short code word. Each trace has four miss rates shown, one

for each kind of memory reference (read, write, and instruction fetch) and the

overall miss rate.

4 Why it works

There are four reasons why this scheme works: (1) encoding differences between

32-bit addresses often requires fewer bits than encoding the addresses, (2) the

differences tend to cluster much more than the original addresses, (3) the stream

of differences is much more regular than the stream of addresses, and (4) the

LZ compression technique works solely by discovering and encoding common

sequences of bytes in the source. These attributes can be seen in Figure 6. The

two columns on the left are the first few memory references from the LATEX

7

original difference
trace trace comments

2 2020 3,2 2020 first instruction ref

0 efffd64 3,0 efffd64 first data read, from stack

0 efffd66 0 2 second data read
2 2022 2 2
2 2024 2 2

·2 2026 2 2
2 2028 2 2
2 202a 2 2
2 202c 2 2
2 202e 2 2
2 2030 2 2
2 2032 2 2
1 40000 3,1 40000 first data write

1 40002 1 2
2 2034 2 2
1 efffd60 3,1 efbfd5e a data write 'miss'

1 efffd62 1 2
2 2036 2 2
1 efffd5c 1 -6
1 efffd5e 1 2
2 2038 2 2
1 efffd58 1 -6
1 efffd5a 1 2
2 203a 2 2
2 203c 2 2
2 203e 2 2
1 efffd54 1 -6
1 efffd56 1 2
2 2066 2 28
2 2096 2 30
0 efffd54 0 -12
0 efffd52 0 -2
2 2040 2 -56
2 2042 2 2
2 2044 2 2
1 efiTd54 1 -2
1 efffd56 1 2
2 2098 2 54
2 209a 2 2
2 209c 2 2
2 2d898 3,2 2b7fc an instruction fetch 'miss'

2 2d89a
1

2 2

Figure 6: Sample trace from LATEX
8

trace, with the resulting stream of differences in the middle column. (The

notation "3,2" means that a reference with label2 missed.) Differencing results

in more redundancy, the numbers required to represent the differences are much

smaller, and there are patterns in the difference stream that are not apparent

in the originaL (All numbers are in hexadecimal).

Finally, the distribution of byte-values in the trace file has little to do with

the final compression. For example, the number of bytes in the raw trace file

CCI is 68,557,790, and the number of bytes after differencing is 27,830,296.

The entropies of the two traces are 5.40 and 3.55 respectively, implying that

a Huffman encoding of the raw file would be about 46.28 megabytes, and of

the difference file about 12.35 megabytes. However, these are nowhere near the

5,649,247 bytes produced by the combination of differencing and compressing.

The best compression is not achieved by looking at individual byte values and

their distributions, but by the discovery and encoding of common sub-sequences

exposed by differencing. 'Bit twiddling' variations based on this basic method

result in negligible differences.

5 Refinements and Variations

I have tried several variations of the scheme presented so far to compress trace

files even further. In actual fact, most of these 'variations' were tried first, and

led to the conclusion that the simpler scheme presented above was the better

one. I'll recapitulate the ontogeny of the technique, and then report on the

results of the variations tried along the way.

The original scheme came from thinking about caches (and hence the name

M ache). The first attempt simply coded three caches, one for instruction. fetches,

one for data reads, and another for data writes. Then, whenever a (label address)

pair was read, cache1abel was examined for a slot i which contained the address.

If such a slot were found (a 'hit'), a 16-bit word was created which encoded

9

10%

8

6

4

2

0

4.6

[ill 6

COMP

1.2

;-- T.(T.e

~;--

l 1 l5C

1.0

;-- T.l T.3 -- ...
;-- e.o 6.2

-r-

1 • 256

1.0

;-- s.e T.2

1--;--

CCI VAX TROFF LATEX SCR-N

Figure 7: Maching with 1/8/256-slot caches
SCR-R

the label (and hence the cache), the slot number, and the offset within the

slot. If it were not found (a 'miss') a header byte was emitted that encoded

the miss for this label, followed by the emission of the four byte address; this

stream of encoded cache-hit records is then compressed with an LZ algorithm.

I tried several of the traditional replacement algorithms for caches and, not

surprisingly, LRU worked best.

With a little thought came the realization that if the cache were made into

a LIFO stack with LRU replacement, - i.e. when 'a slot was hit, it became slot

zero and all the slots in between were moved down - then almost all hits would

be to slot zero. This would increase the amount of redundancy in the resulting

cache-hit stream. This modification produced significant improvements, and

was the method of choice for some time. Note that the method presented in

section 2 is this method using a cache with one slot.

But what is the optimal number of slots to produce the best compression?

Figure 7 shows each of the traces Mached with different sizes of caches: the

original1-slot cache, an 8-slot cache, and a 256-slot cache. Apparently, ~t makes

little difference.

To test this further, I tried compressing a single trace using different numbers

of cache slots. Figure 8 is the result of Maching the CC1 trace using one, two,

four, six, eight, ten, sixteen, thirty-two and 256 slots in the caches.

10

T.O T.3 T.3 T •• T.3 T .• T •• T.O

• 10 250

CCl

Figure 8: Maching CC1 with 1/2/4/6/8/10/16/32/256-slot caches

Even though there appears to be a minimum somewhere between six and

ten slots3 there is apparently not enough improvement over the 1-slot scheme

(which is exactly equivalent to the 'differencing' method presented in section 2)

to warrant the additional complexity.

There were a few other variations tried that "seemed like a good idea at the

time" but which produced either worse results or negligibly different results.

I will not report details on them here, but just give the bottom line. For

example, the thought occurred to me that if each instruction word in memory

could be given its own data cache, the memory reference patterns associated

with each instruction would readily become apparent. Since not every word

can be given such a cache, we approximated it by hashing the aqdress of an

instruction word into a set of 256 caches. However, either the number of caches

was insufficient, or the patterns were not uncovered, because the results were

surprisingly disappointing.

Another scheme used an eight-bit byte to encode hits and misses rather than

the 16 bit words used in the experiments reported elsewhere in this paper. The

results were negligibly different, and not always better. When using an ·eight-bit

encoding, any differences larger than about 40 require a 32-bit word to record

3 The 'bump' at eight slots in Figure 7 is probably attributable to vagaries of the LZ

compression scheme; in particular, when the hash table in LZ fills up and the compression

ratio begins to fall, LZ clears everythlng and starts over afresh.

11

the 'miss'. Such misses are now much more frequent, and account for a larger

percentage of the resulting compression file.

And, finally, I split the trace out into three separate instruction, data-read,

and data-write streams. This required the existence of a fourth stream to record

the order of the reads, writes, and instruction fetches. The reasoning behind

this said that if instruction streams could be reduced two orders of magnitude

when taken by themselves, perhaps that compression combined with increased

compression of the data-read and data-write streams would result in a better

compression overall. Alas and alack, the fourth stream (the order stream) turns

out to be pretty random already, and did not compress sufficiently to make

everything come out smaller on the wholeo While it was true that the sum

of the sizes of the compressed instruction, data-read, and datarwrite streams

was smaller than the size of the original compressed trace file, the size of the

compressed order file was too large, and made the total file larger. Besides

which, this scheme was far too complicated to recommend in good conscience.

One variation I haven't tried is run-length encoding: that is, after differenc-
•

ing, encoding the number of times the same cache-hit value occurs sequentially.

This run-length encoded stream can then be passed to the LZ compression

scheme. While this may produce impressive results for instruction-only trace

files, I suspect that it will do nothing for data-only traces, and will have marginal

benefit for full traces. The results presented in the next section support this

conjecture.

5.1 Other Applications

This scheme should not be relegated to compressing only trace data. Any stream

of data that contains first-order difference patterns can benefit from differencing

followed by LZ encoding. For example, image bit maps, particularly those

using multiple bits per pixel (e.g. color images), and analog-to-digital data that

changes relatively slowly over time would be very susceptible to compression by

12

100%

75

25

8T
&2

TT TV r- T9

r-r-1--- -

C R CR MR M

20
14

e.o e.• 11 a.a

~
4.1 6.0 4.0 4.6 3.1

rr1'10rtrrmrtv-

13

~ C CR MR M

PO Pl P20 P33

Figure 9: Mache vs. compress vs. run length encoding; percent of original file

this technique.

To show this, we have compressed four color bit-images4 : PO is a picture

of the Mandelbrot set [4], and P1, P20, and P33 are magnified details of this

set. The size of each image is 722,532 bytes: eight bits of color information per

pixel for an 850 by 850 image. In terms of visual complexity, P 1 is the least

complex, and P33 is the most complex, with P20 falling somewhere in between.

This is reflected in the pictures' respective compressibility. Figure 9 shows that,

with the exception of P33, Mache (M) obtains 'the better compression over

compress (C), a run length encoding (R), and a compress of the run length

encoding (CR). Maching the original picture also does better than Maching the

run length encoded version of the picture (MR).

5.2 Performance

It should be fairly obvious from Figure 1 that the overhead required to do the

differencing is minimal: keep the last address and pass to the LZ compression

routine the difference between the last and the current address. The fact that

even with this overhead M ache is often faster than compress may be surprising.

Since differencing produces a file that is approximately 40% of the size of the

original, the LZ routine has fewer bytes as input. Given that a good portion

4 Black and white versions of the pictures appear in an appendix to this paper.

13

of the time in LZ compression is spent hashing, shifting, anding, and oring

variable length bit strings, the overhead of a subtraction and a compare or two

is more than compensated by the work saved in the LZ compression routine.

However, LZ works much faster when decompressing a file, so the overhead in

M ache of caching and adding addresses represents a greater proportion of the

execution time when it is decompressing. Nevertheless, the performance figures

are very close. For example, on a MIPS processor, it took 408 CPU seconds to

compress the COMP trace, but only 315 seconds to .Mache it. To uncompress

takes 215 CPU seconds, but to unMache it takes 229 seconds. (For comparison,

it takes the cmp program over 170 seconds to compare the uncompressed 65Mb

COMP trace with a copy of itself.) Mache compressed a smaller execution trace

from 691,460 bytes to 67,583 bytes in 3.3 CPU seconds, while compress took it

down to 235,971 bytes in 4. 7 seconds. M ache took 2.5 seconds to recover the

trace, while compress required 3.3 seconds.

Bottom line: M ache is fast.

6 Related Work

Most of the related work in trace compaction has concentrated on decreasing

the amount of time required to do a simulation (of caches, virtual memory, etc.)

as well as the amount of space required to store the cache. These compression

schemes have often thrown away information that is relatively unimportant to

the intended simulations. The technique reported in this paper has concentrated

solely on space savings. If decreasing simulation times are important, then one

of the following techniques may prove useful.

Alan Smith [7] reports on two methods for reducing the size of address

traces. The first method, stack deletion, deletes the top k levels of the LRU

stack. Information loss introduces an error rate in paging simulations on the

order of less than 1% while reducing the trace size from 25-95%. The second

14

method, snapshot, reduces trace sizes by a factor of 5 to 100 with an introduced

error rate similar to that for stack deletion. However, these error rates appear

to be valid only for paging or cache studies using full associative placement, and

do not apply to set-associative caches.

Thomas Puzak [5] reported a method he called tape stripping in which a

direct-mapped cache with a fixed block size is simulated. Only the misses and

run-length of the hits are recorded from the simulation, resulting in compaction

on the order of 90-95%. He proves that there is no error introduced if the

stripped trace is used to simulate caches with more sets and the same block

size. He also shows that if different block sizes are used, the introduced relative

error is small (::5 1%) and becomes negligible as the block size becomes large.

He suggests using different traces that have been stripped using the block size

of interest. Of course, this requires keeping the original raw trace around, in

which case Mache will be useful.

Anant Agarwal [1] studied cache behavior in multi-processor systems with

hierarchical caches. His compaction technique can produce reductions of one .
to two orders of magnitude, and introduces simulation errors on the order of

10-15% in measured miss ratios due to information loss.

1 Conclusions

Mache is a simple and surprisingly effective technique for compacting execution

traces. It uses differencing of memory references to expose patterns in pro

gram execution that are not immediately available in the raw trace. Using a

compaction scheme that looks for and encodes long common sequences of bytes

results in compressed trace files less than 10% of original size for complete traces,

and on the order of 0.5% the size of the original trace for instruction-only traces.

Acknowledgements: The final form of this paper been improved consid

erably by constructive input from several people. Thanks to Paul Hilfinger,

15

David Wood, Charlie Farnum and especially Alan Smith for their comments.

Any problems that remain are mine, and are probably the result of my not

paying closer attention to their suggestions.

16

8 Bibliography

1. AGARWAL, A. Trace Compaction Using Cache Filtering with Blocking. draft,

1987.

2. HILL, M. D. Dineroiii Cache Simulator. University of California, Berkeley,

UNIX Programmer's Manual, August 1985.

3. KNUTH, D. The TeXbook. Addison Wesley, Reading, MA, 1984.

4. MANDELBROT, B. B. The fractal geometry of nature. W. H. Freeman and

Company, San Francisco, CA, 1983.

5. PUZAK, T. R. Analysis of Cache Replacement-Algorithms. University of

Massachusetts, PhD Dissertation, February 1985.

6. SAMPLES, A. D. Code Reorganization for Instruction Caches. Computer

Science Division, EECS, University of California, Berkeley, Technical Report

UCB/CSD 88/447, 1988.

7. SMITH, A. J. Two Methods for the Efficient Analysis of Memory Address

Trace Data. IEEE Transactions on Software Engineering SE-31 (January 1977).

8. WALL, D. Register Windows vs. Register Allocation. SIGPLAN '88 Confer

ence on Programming Language Design and Implementation 237 (June 22-24,

1988), 67-78.

9. WELCH, T. A. A Technique for High Performance Data Compression. IEEE

Computer 176 (June 1984), 8-19.

10. ZIV, J. AND LEMPEL, A. A Universal Algorithm for Sequential Data Com

pression. IEEE Transactions on Information Theory 23 (1976), 75-81.

11. ZIV, J. AND LEMPEL, A. Compression of Individual Sequences via Variable

rate Coding. IEEE Transactions on Information Theory 24 (1978), 530-536.

17

The complex-plane coordinates of the lower left-hand corner of each picture

can be found in the box in the upper right. 'Size' refers to the number of pixels

to a side of the image on the original color display.

18

• • • oo · _ .. ; .. m· ·m· --- .1 • . -• • • --• ~· .. m .. m .. m· • • • I ----• . --- - -• -
:s:

.. -• ... • .. •

0000~~~~ --- .. • . - "
0 :0 --- .. -• -

@ :m~ :m~ :m~ :m:
• • • • "' • --- -... ~ --- toi ..; . --0 • N -. - .. I I

:~:1
~ --- =f

... .. ---
oo :m~ :m~ :m~ :m~

... ~ -¥l - . .. 0

• - "" • > • -toi toi - • • 0 .. " "' u u .5 I I - .. "' "'
..
X

~:1: :~: :m::m: :m: a· ~ • ..
• ..

. . ,:

Pict • pl

lool • -0.7,010011110101

IMII • 0.11101010010111

St•e • 0.120DDOIIIIOIOI

She • lSI

CU.rnat Celu'Mop • •wt21

Coavos leol

CAaVil I"•! •

Convos SUe •

-1.7,101111010111

1.11101011110111

1.12001111DIDIII

(Lu•) (Disp) {lnv.) (!§:!) (ll\oit)

(pm) (!!!) ~ :a.: UD
C!:D @!) @D @D (~)

:fl'.¥11: :m.: (ill] C!ID @D
:fll.a: @] (ill) @D (ill]
(ill]

:.m..: :miJj): :l.ll!ra:
lohte Spec•:

~.~;t, ~p~...->J.~ff.., I. ·~N "~~,.' H

c- bcfnlt)

•nn ·
(l/S Rohte)

(full Rotote)

(Iavert)

(Mop Rotoh)

CehtiCifS

(bwooo) (bvoot) {hooz)

(bvoo.t) (llvOH) (11v032)

(bv121) (cull) (cuD2)

(coso.&) (cosu) (li..Ol)

(lin02) (li>•03J (lia16)

(stpot) (stvoz) (stpO-')

(stp16J

0

• • • ®@~~~ • • • --0

•
00~~@]@ --• • • .. --"' . • • •

:s:
.. N .. • "' --.. .. "' -... 0000~~@~ "' = = :> M .. • --.. 0 - ~:;:~~~

.. "" ::= :j 2o

• • .. "' • "'
> • ~ -- ... "' ~ "': ~
.. .., ,... ""' .. • 0 .. • "' • • • •

.. ..
"' • .. . I I

:m:i
..
:~~~~~00 "' • • ~

.. ~ - • • •

@~~~~
.. 0 ~ : ; ~ ': -= :

"' . "' • • ""' •
> - •:.:.oo~-- - ~ """" A A u \1 ...-4 ""'

No .. • "' u .. 1:!, .. •
.I I . • ... "' "'

.. u
X

• • • • .
0000@~@~ ;· 0000~~~~~ Q-..,==-~ .. :. :. - -

. ..: .A A u ..-! ""' lo'l

.. N ~
" N ...,. _, N M .,., .,. =
"' "' "'
~ 11'1 "'
"'No
... .. 0

(") .-4 0 Cl "'

"' I •

~ II I I •

-,.. . " . w !'of
-t VI .! ""'
~ ,..,
~:;:}:;': :,~:>.:::;;:;:;:;,:::

:,<:::

~.;:.:::

n

• .
X -.. ...
• u

...,. N _.

......... -M :-,a -.,
"' .. '"' "' "' ,., .
:0. ~
.. 'ol N e "' "' "' .. . !'I ••

I
u ~ .•
..., .. ':It
> > > " ~ . • • ., I •

:...~ ~..o~ :..J I•

;:;:;:(:}':: ;:;:;: ::::: :;::;:~::::

:,::;,~:~.:

·~Jilii

<::< I
:

.::::: ~:::::::::: :;:;:,~:·

-~
II

:ffi

~
.,...,...,...,..

..

~
...,, ..!

~
--,1~~1~

~ :s X

I ... I I
' ~u .. L ._ U

:;::::;::::: =~~= ::;::{: :;:;:;;:;::
::;>:: :;:;:

•
·~

::::;: ;:;:;:

:::::::~:~<.:;::~ :::;::::;:::

:~:~::!'>

'.::0:.

~\:::;:::
:.;:;: f.~~~

:=:r-:
::f<:::::;::;:
<::;;;;;::::

':~
t:=:I::~:;:;

=~~

;~:;''ii: ::;::

;:;:;:

:;:::;
::;:;: :;:;::

}c

':!"

::::;:

